
Introduction to Rust



Chapter 5



ROADMAP 3

1 3 5

642

Basic Tool Installation Using Cargo and Crates Conditionals and Loops

Your first lines of Rust Data Types and User Input Project

You are here



Conditionals and Loops

4

5.



Conditionals 5

A fundamental function of every programming language is to execute different commands according to the
program’s state e.g. the contents of the program’s variables. The first command we are going to discuss is the
match Control Flow construct.

The general syntax is:

match <variable> {

x => <command>,

y => <command>,

other => <command>,

}

Let’s make everything clear with an example.



Conditionals 6

Let’s say we have the code from our previous lecture where we read a u8 number from the user and store it in 
the variable “number”.Instead of just printing the number again we can use match on the variable to have a 
different behaviour. Let’s use cargo new conditionals-and-loops and open the project in VSCode.

We will use the same code from the previous lecture up until the println! statement. Now let’s match the 
variable number and print different statements depending on the value:

Use cargo run and try some values to see the output!
(using the underscore _ before a variable name 

explains to the compiler that we are not going to 

use it anywhere else)



Conditionals 7

What we did now is kind of silly functionally so let’s try something more useful. We will use the Ordering
functionality of the standard cmp (compare) crate. In order to do that we have to include on the top:

use std::cmp::Ordering;

Now we can use the method .cmp() to compare two numbers and change the program’s behaviour with the
match statement. Let’s declare a u8 variable called “ten” and give it the value 10. Then we can use the match
statement in the expression number.cmp(&ten) and act accordingly on every Ordering possibility:

Now by using cargo run the program tells us if our input is smaller than, bigger than, or exactly 10.



Loops 8

The most basic loop is literally loop{} . We can just surround our code with the brackets of the command loop
and the program will continuously ask as for an input and tell us if it’s bigger, smaller or equal to 10. If you try
it you can see that the program never ends, so you will have to kill it manually by CTRL+C. We can manually
end a loop by using the command break; Let’s change the match expression on the Ordering::Equal line to:

Ordering::Equal => {

println!("Exactly 10.");

break;

}

Now when we enter the number 10 the program will print “Exactly 10.” and then exit the loop, terminating it.



Conditionals and Loops 9

Our final program should look like this:



You are now ready to 
tackle the project!

10



Any questions?

You can find me at:
» vlasopoulos.v@gmail.com

11THANKS!


