
Introduction to Rust

Chapter 3

ROADMAP 3

1 3 5

642

Basic Tool Installation Using Cargo and Crates Conditionals and Loops

Your first lines of Rust Data Types and User Input Project

You are here

Using cargo and crates

4

3.

Cargo 5

Cargo is Rust’s build system and package manager. From now on when creating/testing/running a rust project we will
use Cargo. Cargo is already installed in your system as it comes packaged with the Rust installer.

Let’s use the cargo command to make a new cargo project for this lecture. First you will need to open a command line
in our “rust-course” folder. You can use cd if you’re familiar with it or you can just highlight the path on the folder:

Type “cmd” and press enter:

A new terminal will open

in the highlighted folder:

Cargo 6

Now lets use the cargo command. To create a new project we can use the command “cargo new <project name>” so
lets create a new project called cargo-and-crates with “cargo new cargo-and-crates” and press enter.

Cargo has created a new folder for us with the name we gave it and added some files inside it.

Cargo 7

For now we can ignore the “.gitignore” file. Lets focus instead on the “src” folder and the “Cargo.toml” file. The “src”
folder contains all our source code (*.rs) files. Cargo has created one rust file inside the folder “src” called “main.rs”
which contains the Hello World program we created in the previous lecture!

The “Cargo.toml” file is a special file that contains all of our project’s configurations.

Let’s open the project we just created with Cargo in Visual Studio Code (like last time by opening the folder).

Visual Studio Code Cargo Plugins Installation 8

In order to have a better experience with Cargo we are going to add two new extensions in Visual Studio Code.

Better TOML and crates

Cargo 9

Now that we have the Better TOML extension lets double click Cargo.toml in order to inspect it.

As we can see it has two sections, [package] and [dependencies].

Under [package] we have the name of our project (which will also be
the name of our executable after compilation), the version which
defaults to “0.1.0” and the edition of Rust we are using to compile the
project with, in this case “2021”.

Under [dependencies] we have nothing (for now). Dependencies are
other people’s code libraries that we can use in our program called
crates.

Let’s run our program once using the cargo command before we
move into crates.

Cargo 10

Using the terminal we can execute cargo commands. We can just compile our program with the command “cargo build”
and we can compile and run it with the command “cargo run”. Let’s use cargo run:

The cargo steps start with green text. First it compiled our program, then showed compilation information when the
compilation ended, and after that it run our program, printing “Hello, world!” in the terminal. Under the hood Cargo
used the rustc command we also used in our first program, but from now on we will let Cargo deal with rustc.

Crates 11

crates.io
As said before crates are other people’s libraries of code we can use in our programs. You can find a list of
available crates in the crates.io website. In order to use a crate we have to declare it in our Cargo.toml file
under [dependencies]. Let’s see an example of that using the rand crate which gives us the functionality of
generating random numbers. Add in the Cargo.toml file under dependencies the line rand = "0.8.5"

rand is the name of the crate and after the equals we put in quotes the version
of the crate we want to use (in this case 0.8.5).

Now run “cargo build” and watch the output!

Cargo downloads the rand crate and every other crate needed by rand
automatically!

https://crates.io/

Using Crates 12

Now let’s open our “src/main.rs” file to use the rand crate. Before our main function we will add
the line “use rand::Rng;” This will allow us to generate random numbers using the rand crate.

Now inside our main function we can create a variable using the let keyword followed by the
name of the variable. Let’s name our variable “random_number”. We will use the gen_range
method of the rand crate to give our variable a value:

From the rand crate
Call the random

number generator Generate a random

number within the

following range

The range of

numbers from 1 to

10 not including 10,

so 1,2,3,…,9

Using Crates 13

Now our random_number variable has a random value of 1 through 9. In order to print this
number to the console we will use the println! macro again but with a twist!

Instead of “Hello, world” inside the parentheses of println! we will put “{}” followed by a comma
followed by the variable’s name, so:

This means that whenever the placeholder {} brackets exist they will be replaced by the value of
the variable after the comma. You can add more characters within the quotes if you want:

Now let’s use cargo run to compile and run our program and inspect the output.

Run it a few times to see different random numbers!

Final product 14

Our final program should look something like this in Visual Studio Code:

use rand::Rng;

15

Any questions?

You can find me at:
» vlasopoulos.v@gmail.com

16THANKS!

