Introduction to Rust

Chapter 4

ROADMAP

Basic Tool Installation Using Cargo and Crates Conditionals and Loops

You are here

\

Your first lines of Rust Data Types and User Input Project

Data types and user input

Data types

In the previous lecture when we declared the variable “random_number” we didn’t specify what type that
variable would be. We let the Rust compiler to deduce the type on its own, but in most situations it is required
of us to declare what type a variable is going to be before compilation.

In order to do that we write after the variable “: <type>”, for example: let random_number :i32=... Here we
declare the variable random_number as an integer of 32 bits.

That is exactly what the Rust compiler automatically assigned to our variable, but we could also declare it as
an unsigned integer (u32), meaning no negative numbers as there was no possible negative number assigned
to this variable in our specific example.

The extension of Visual Studio Code rust-analyzer gave us a hint on how the compiler would interpret the
variable “random_number”ﬂ here it shows us that the variable will be of type i32.

Data types

Integer types:

Unsigned

Rust Data Types:

Floating types: f32, f64 (e.g. 6.4, 3.14)
Boolean type: bool (true/false)
Character type: char (e.g. ‘@’, ‘Z’)
String object: String (e.g. “hello”)

There is also the String slice type: &str which relates to the
String object but those are more advanced and will be
discussed in a different lecture.

Data types and user input 7

Let’s create a new Cargo project for this lecture with the name “data-types-and-input”. As a reminder we go
to our main “rust-course” folder and use the command “cargo new data-types-and-input” and then open the
new folder in Visual Studio Code.

File Edit Selection View Go Run Terminal Help main.rs - data-types-and-input -

@ EXPLORER mainrs U X

~ OPEN EDITORS src 2 main.rs
X main.rs src u
~ DATA-TYPES-AND-INPUT [5 B U & main() {
v src
main.rs
target
2 -gitignore
Cargo.lock
7] Cargo.toml

Data types and user input

Let’s create a variable of type u8 (unsigned integer of size 8 bits which means a number between 0 and 255)
and let the user input its value.

In order to read from user input we have to use std::io; (standard input output) so let’s add this line on the
top of our file, above the main function. std is the Standard Library crate available for all Rust projects by
default so we do not need to add anything in our dependencies section of the Cargo.toml file.

First we have to discuss a bit about mutability. By default every variable in Rust is immutable, meaning its
value cannot be changed. In order to have a mutable variable we have to declare it as such using the mut
keyword. e.g. let mut number...

For now we will declare number as a new String in order to let the user set it to some characters and then we
will convert it to a number and assign it to a u8 variable.

Let’s add inside our main function: let mut number = String::new();

Now we are ready to read from the user input and assign it to the variable number.

User input

In order to read user input we are going to use the read_line() method of the io::stdin() :
io::stdin().read_line(&mut number);
The read_line method takes as argument the variable we want to store the input in.

Here we use &mut number which is read as “a mutable borrow of the variable number”. Mutable because of
the keyword mut which means we can change the variable’s value and borrow because of the & character
which means we will take the variable number just to change its value and then give it back to the main
function. Borrowing is a more advanced concept of Rust for a later lecture.

If you run the program now there will be an error! That’s because Rust doesn’t allow us to run code that has
not checked for errors, and that’s one of the reasons Rust is so safe compared to C/C++. Here there can be an
error when reading user input so we have to use the .expect method and give an error message as an
argument for the possibility of an error when reading from user input. So our final line of code is:

io::stdin().read_line(&mut number).expect(“Failed to read line”);

User input 10

We can now test our code by printing what the user entered. Let’s use the println! macro to do that.

println!("{}"", number);
main.rs >
gtd::io

main() {
wmber: String = String::new
io::stdin() Stdin
.read_Lline(buf: & number) Result<usize, Errors
.expect(msg:

User input

By using cargo run we can enter a line and it will be repeated to us, but as you can already see that’s not
exactly what we wanted, we wanted the variable number to be of type u8. In order to do that we can use the
methods trim() which deletes spaces/tabs and new lines from a String, and parse() which converts a String
into a number, on our variable. We will set the content of number on the same variable but this time not as a
string but as a number. This is called “shadowing” in Rust and it goes like this:

let number: u8 = number.trim().parse();

As before there might be an error that we haven’t handled, for example inputting a string cannot be
converted to a number, or inputing a number outside of the range 0-255 that u8 expects, so we have to
handle that:

let number: u8 = number.trim().parse().expect(“Not a valid number!”);

File Edit Selection View Go Run Terminal Help

EXPLORER

~ OPEN EDITORS
% A mainrs src
 DATA-TYPES-AND-INPUT
~ I src
A main.rs
> Im target
i’ .gitignore
il Cargo.lock
ith Cargo.toml

Our finished program should look something like this:

mairn.rs - data-types-and-input - Visual Studio Code

A mainrs U X

src » 24 mainrs > ...
1 use std::io;
» Run | Debug
tn main() {
let mut number: String = String::new();
io::stdin() Stdin

.read_line(buf: &mut number) Result<usize, Error:
.expect(msg:);

let number: u8 = number.trim().parse().expect(msg:
printin! (, number) ;

Remember to handle
possible errors!

THANKS! 14

Any questions?

You can find me at:
» vlasopoulos.v@gmail.com

